Erler & Kalinowski, Inc.

4 June 1999

Consulting Engineers and Scientists

Santa Monica Business Park 2951 28th Street, Suite 1020 Santa Monica, California 90405 (310) 314-8855 Fax (310) 314-8860

Ms. Ana Townsend Site Cleanup Unit California Regional Water Quality Control Board Los Angeles Region 320 4th Street, Suite 200 Los Angeles, CA 90013

Subject:

Quarterly Progress Report for January to March 1999

For the Jervis B. Webb Company Property at 5030 Firestone Boulevard, South Gate, California (RWQCB SLIC File No. 744; EKI 961025.02)

Dear Ms. Townsend:

On behalf of Jervis B. Webb Company of California ("Webb"), Erler & Kalinowski, Inc. ("EKI") is pleased to submit the enclosed *Quarterly Progress Report for January to March 1999*, dated 4 June 1999. This report describes the activities completed at the Webb property located at 5030 Firestone Boulevard in South Gate ("Site") during the period from January through March 1999.

We have received your letter dated 18 May 1999 regarding EKI's Workplan for Clarifier Removal and Soil Remediation by Soil Vapor Extraction, dated 14 April 1999, and have begun the work as authorized. With respect to the requirements to conduct quarterly groundwater monitoring and to submit a quarterly groundwater monitoring and sampling plan by 28 June 1999, we are currently implementing quarterly groundwater monitoring in accordance with the Project Tasks, Schedule, and Work Plan for Additional Groundwater Investigation and Quarterly Groundwater Monitoring at the Jervis B. Webb Company Property prepared by EKI, dated 29 September 1998. We propose to continue groundwater monitoring pursuant to the existing workplan, dated 29 September 1998 and, therefore, request that the requirement for submission of a new workplan be waived.

Please advise us if our proposal to continue monitoring groundwater pursuant to the existing workplan is acceptable. Thank you.

Very truly yours,

ERLER & KALINOWSKI, INC.

Steven G. Miller, P.E. (CE, Cert. 43419)

Low 1 milla

Project Manager

cc: Mr. Eli Stanesa, Jervis B. Webb Company

Quarterly Progress Report for January to March 1999

Jervis B. Webb Company Property 5030 Firestone Boulevard South Gate, California

4 June 1999

Erler & Kalinowski, Inc.

Consulting Engineers and Scientists 2951 28th Street, Suite 1020 Santa Monica, California 90405 (310) 314-8855 Fax: (310) 314-8860

Jervis B. Webb Company Property 5030 Firestone Boulevard, South Gate, California Quarterly Progress Report for January to March 1999

Table of Contents

1.	INTRO	DDUCTION	1-1
2.	QUAR	TERLY GROUNDWATER MONITORING	2-1
2.	1. Meası	rements of Groundwater Elevation	2-1
2.	2. Grour	dwater Sampling	2-1
	2.2.1.	Groundwater Sampling Procedures	2-1
	2.2.2.	Analytical Results for Groundwater Samples	2-2
	2.2.3.	Quality Assurance/Quality Control for Groundwater Chemical Analyses	2-2
3.	SOIL	REMEDIATION	3-1
4.	SUMN	AARY OF FINDINGS	4-1
5.	REFE	RENCES	5-1

LIST OF TABLES

- 1 Groundwater Elevations in Monitoring Wells
- 2 Analytical Results for Monitoring Well Groundwater Samples

Jervis B. Webb Company Property 5030 Firestone Boulevard, South Gate, California Quarterly Progress Report for January to March 1999

Table of Contents

LIST OF FIGURES

- 1 Site Location Map
- 2 Monitoring Well Locations
- 3 Elevation of the Groundwater Table on 19 January 1999
- 4 Elevation of the Groundwater Table on 3 February 1999
- 5 Elevation of the Groundwater Table on 30 March 1999

LIST OF APPENDICES

- A Groundwater Purge and Water Quality Monitoring Forms for Groundwater Sampling
- B Laboratory Reports and Chain-of-Custody Forms for Groundwater Sampling

1. INTRODUCTION

Erler & Kalinowski, Inc. ("EKI") has prepared this *Quarterly Progress Report for January to March 1999* for the property located at 5030 Firestone Boulevard and 9301 Rayo Avenue in South Gate, California Avenue (collectively referred to as the "Site," see Figure 1). The principal objectives of the activities performed during this quarter were to 1) obtain additional data on the groundwater elevations and concentrations at the Site, and 2) prepare a workplan for soil remediation at the Site. The work documented in this report was performed of behalf of the Jervis B. Webb Company ("Webb"). The property at 5030 Firestone Boulevard is owned by Webb ("Webb property") and the adjacent property at 9301 Rayo Avenue is owned by Reliable Steel Building Products, Inc. ("Reliable Steel").

EKI has performed the following activities in order to investigate of areas of environmental concern at the Site since October 1997:

- Installation of soil borings and collection of soil samples;
- Installation of five groundwater monitoring wells (MW-1 MW-5);
- Collection of groundwater elevation data from the on-site groundwater monitoring wells;
- Collection and analysis of groundwater samples from the existing five groundwater monitoring wells and from former monitoring wells DIAL MW-4 and DIAL MW-5;
- Collection of soil data using cone penetrometer testing;
- Collection and analysis of groundwater samples utilizing using Hydropunch sampling; and
- Collection and analysis of soil gas samples.

The results of EKI's previous investigations were reported in the following documents:

- Phase II Soil Investigation Report, 18 February 1998;
- Phase II Groundwater Investigation Report, 30 June 1998; and
- Additional Groundwater Investigation and Quarterly Monitoring Report for October to December 1998, 13 January 1999.

Chemical analyses of the soil collected at the Site detected two volatile organic compounds ("VOCs"): trichloroethene ("TCE") and tetrachloroethene ("PCE"). Additional VOCs were detected in groundwater and soil gas samples collected at the site; however, the concentrations of TCE and PCE detected were generally higher than the concentrations for other VOCs.

2. QUARTERLY GROUNDWATER MONITORING

2.1. Measurements of Groundwater Elevation

The depth to groundwater in monitoring wells MW-1 through MW-5 was measured on 19 January, 3 February, and 30 March 1999 (see Figure 2 for well locations). These data are provided in Table 1. The depth to the groundwater at the Site is approximately 43 ft bgs. Contours representing the elevation of the groundwater table on 19 January, 3 February, and 30 March 1999 are shown on Figures 3, 4, and 5, respectively. As inferred from the contours of groundwater elevation shown on Figures 3, 4, and 5, the primary direction of groundwater flow in the groundwater table aquifer beneath the Site appears to be toward the south.

2.2. Groundwater Sampling

2.2.1. Groundwater Sampling Procedures

Prior to sampling of groundwater, each well was purged of a minimum of three well-casing volumes of groundwater using a submersible, electric pump. Groundwater purging was performed by West Hazmat and groundwater samples were collected by EKI. All down-hole equipment was thoroughly steam cleaned before use at each well.

During purging of groundwater on 3 February 1999, groundwater quality parameters were recorded by EKI (temperature, pH, conductivity, and turbidity). Water quality monitoring equipment was calibrated prior to commencement of groundwater purging. For each purge sample, the time, water quality parameters, and volume of purged groundwater were recorded on field purge forms (see Appendix A). Purging at each well was continued until parameters stabilized to within approximately 10%. Groundwater quality parameters were generally stable after purging three casing volumes of water from each well. Final turbidity was generally low, between 1.5 and 5 nephelometric turbidity units (see Appendix A).

Groundwater samples were collected by EKI using disposable polyethylene bailers. A new bailer was used to sample each well. A sample label that included a unique sample identification number, the time, and the date when the sample was collected was attached to each sample container. Sample containers were sealed in zip-lock plastic bags and placed in a cooler with ice for temporary storage and transport to the laboratory. Chain-of-Custody forms were initiated in the field and included with the samples. Laboratory reports and Chain-of-Custody forms for groundwater samples are attached in Appendix B.

2.2.2. Analytical Results for Groundwater Samples

Samples of groundwater were collected from monitoring wells MW-1 through MW-5 on 3 February 1999. In addition, a duplicate sample of groundwater was collected from well MW-5 on 3 February 1999. All samples of groundwater were submitted to Orange Coast for volatile organic compound ("VOC") analyses using EPA Method 8260. The analytical results for groundwater samples collected during this monitoring event are summarized in Table 2.

TCE, PCE, cis- and trans- 1,2-dichloroethene ("c-1,2-DCE" and t-1,2-DCE"), 1,1-dichloroethene ("1,1-DCE"), 1,1-dichloroethane ("1,1-DCA"), and 1,2-dichloroethane ("1,2-DCA") were detected in the samples of groundwater collected from groundwater monitoring wells MW-1 through MW-5 on 3 February 1999. The analytical results for the samples of groundwater collected during this monitoring event were similar to the results of previous groundwater monitoring at the Site, with the following exceptions:

- 1,2-DCA was detected in the sample of groundwater collected from MW-4. This is the first time that 1,2-DCA has been detected in a sample of groundwater collected from the monitoring wells at the Site. 1,2-DCA has previously been detected in Hydropunch groundwater samples collected at the Site.
- TCE and c-1,2-DCE were not detected in the sample of groundwater collected at well MW-4. Both of these chemicals were detected in the sample of groundwater collected from well MW-4 on 5 November 1998.

As mentioned in the *Phase II Groundwater Investigation Report* by EKI, dated 30 June 1998, benzene and xylenes were detected in the samples of groundwater collected from the former off-site wells DIAL MW-4 and DIAL MW-5 (Dial Corporation). These chemicals have not been detected in any of the samples of groundwater collected from the monitoring wells at the Site.

2.2.3. Quality Assurance/Quality Control for Groundwater Chemical Analyses

Standard laboratory QA/QC procedures used for the project included analysis of matrix spikes, matrix spike duplicates, a quality control check spike sample, and a method blank. The percent recoveries of matrix spikes, matrix spike duplicates, and the quality control check spike sample were within acceptable ranges. No analytes were detected in the method blank samples analyzed for this project. QA/QC results are provided with the laboratory reports in Appendix B.

EKI also collected a duplicate groundwater sample from well MW-5. The two samples collected from MW-5 had the same four analytes present above detection limits. The relative percentage differences ("RPDs") for these analytes ranged form 8.5 to 12.7. These RPDs indicate that an acceptable sampling and analytical reproducibility exists.

3. SOIL REMEDIATION

EKI has submitted a *Work Plan for Soil Vapor Extraction*, dated 4 April 1999, to the California Regional Water Quality Control Board. Upon approval of this Work Plan, EKI will remove the clarifier at the Site and begin operation of a soil vapor extraction ("SVE") system at the Site. The work plan proposes a six month period of operation for the system, at which time system performance will be evaluated. A discussion of the soil remediation activities performed during the period of April through June 1999 will be presented in the next Quarterly Report.

4. SUMMARY OF FINDINGS

Monthly gauging of the groundwater table elevation was performed at the groundwater monitoring wells at the Site on 19 January, 3 February, and 30 March 1999. Quarterly groundwater sampling was performed at the groundwater monitoring wells at the Site on 3 February 1999. The direction of groundwater flow was estimated to be toward the south under both the Webb and Reliable Steel properties. This is consistent with previous groundwater monitoring at the Site.

Chemical analyses of groundwater samples collected during this monitoring event detected PCE, c-1,2-DCE, t-1,2-DCE, 1,1-DCA, 1,2-DCA, and 1,1-DCE. The detected concentrations of TCE were generally higher than the concentrations of the other VOCs detected in each sample. The results of these analyses are generally consistent with prior sampling and analysis of groundwater collected at the Site. The highest concentration of TCE was detected in the sample of groundwater collected from well MW-1 (27,000 ug/l) near the building on the Webb property. TCE was not detected in the groundwater sample collected from well MW-4 located downgradient of the Reliable Steel property.

EKI submitted a work plan to the RWQCB for removal of the clarifier at the Site and for operation of a SVE system at the Site for a six month period of operation. The initial results of these soil remediation activities will be documented in the next quarterly monitoring report.

5. REFERENCES

- Erler & Kalinowski, Inc., 18 February 1998. Phase II Soil Investigation Report for the Jervis B. Webb Company Property at 5030 Firestone Boulevard in South Gate, California.
- Erler & Kalinowski, Inc., 30 June 1998. Phase II Groundwater Investigation Report for the Jervis B. Webb Company Property at 5030 Firestone Boulevard in South Gate, California.
- Erler & Kalinowski, Inc., 13 January 1999. Additional Groundwater Investigation and Quarterly Monitoring Report for October to December 1998, Jervis B. Webb Company Property, 5030 Firestone Boulevard, South Gate, California.
- U.S. Geological Survey, 1964, photo-revised 1981. South Gate, California Quadrangle, 7.5 Minute Series.

TABLE 1
Groundwater Elevations in Monitoring Wells

Quarterly Groundwater Monitoring and Soil Remediation Report

Jervis B. Webb Company, 5030 Firestone Boulevard, South Gate, California

		Elevation of	Depth to	Elevation of	<u> </u>
Well ID	Date	Top-of-Casing	Water	Water Surface	Comments
		(ft msl)	(ft bgs)	(ft msl)	
MW-1	2/27/98	106.09	44.79	61.30	
1919 4	3/2/98	106.09	44.82	61.27	
	3/4/98	106.09	44.58	61.51	
	4/8/98	106.09	44.57	61.52	
	5/20/98	106.09	43.99	62.10	
	10/8/98	106.09	43.38	62.71	
	11/5/98	106.09	43.14	62.95	
	12/21/98	106.09	43.37	62.72	
	1/19/99	106.09	43.26	62.83	
	2/3/99	106.09	42.98	63.11	•
	3/30/99	106.09	43.22	62.87	
MW-2	2/27/98	106.65	44.02	62.63	
	3/2/98	106.65	44.06	62.59	
	3/4/98	106.65	44.13	62.52	
	4/8/98	106.65	NR		Truck parked on well.
	5/20/98	106.65	43.51	63.14	·
	10/8/98	106.65	42.84	63.81	
	11/5/98	106.65	42.64	64.01	
	12/21/98	106.65	42.69	63.96	
	1/19/99	106.65	42.66	63.99	
	2/3/99	106.65	42.55	64.10	
	3/30/99	106.65	42.63	64.02	
MW-3	2/27/98	105.87	44.55	61.32	
	3/2/98	105.87	44.56	61.31	
	3/4/98	105.87	44.40	61.47	
	4/8/98	105.87	44.39	61.48	
	5/20/98	105.87	43.80	62.07	
	10/8/98	105.87	43.26	62.61	
	11/5/98	105.87	43.60	62.27	
	12/21/98	105.87	43.33	62.54	
	1/19/99	105.87	43.18	62.69	
	2/3/99	105.87	42.97	62.90	
B 41.6.4.4	3/30/99	105.87	43.19	62.68	
MW-4	11/3/98	104.72	42.77	61.95	Well Developed
	11/5/98	104.72	42.64	62.08	
	12/21/98	104.72	42.93	61.79	
	1/19/99	104.72	42.80	61.92	
	2/3/99	104.72	42.63	62.09	
	3/30/99	104.72	42.89	61.83	

TABLE 1

Groundwater Elevations in Monitoring Wells

Quarterly Groundwater Monitoring and Soil Remediation Report

Jervis B. Webb Company, 5030 Firestone Boulevard, South Gate, California

Well ID	Date	Elevation of Top-of-Casing (ft msl)	Depth to Water (ft bgs)	Elevation of Water Surface (ft msl)	Comments
MW-5	11/3/98	106.13	43.32	62.81	Well Developed
	11/5/98	106.13	43.30	62.83	<u>'</u>
	12/21/98	106.13	43.58	62.55	
	1/19/99	106.13	43.46	62.67	
	2/3/99	106.13	43.20	62.93	
	3/30/99	106.13	43.49	62.64	

NOTES:

Abbreviations:

ft msl = feet above mean sea level

ft bgs = feet beneath ground surface

NR = Not Recorded
-- Not Applicable

- Monitoring well northing and easting coordinates and top-of-casing elevations for wells MW-1, MW-2, and MW-3 were surveyed on 6 March 1998 by Rattray & Associates, Inc.
- 2. Monitoring well northing and easting coordinates and top-of-casing elevations for wells MW-4 and MW-5 were surveyed on 21 December 1998 by Rattray & Associates, Inc.

TABLE 2 Analytical Results for Monitoring Well Groundwater Samples

Quarterly Groundwater Monitoring and Soil Remediation Report

Jervis B. Webb Company, 5030 Firestone Boulevard, South Gate, California

		Sample					Analy	te Concen	tration				
Well ID	Sample Number	Date	Benzene	Toluene	Xylenes	1,1-DCA	1,1-DCE	1,2-DCA	c-1,2-DCE	t-1,2-DCE	PCE	TCE	TDS
			(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(mg/i)
MW-1	MW-1-0304	3/4/98	<100	<100	<100	<100	220	<100	130	<100	140	24,000	
	MW-1-0304DUP	3/4/98	<100	<100	<100	<100	210	<100	150	<100	160	25,000	
	MW-1-0520	5/20/98	<125	<125	<125	<125	160	<125	130	<125	<125	24,000	1,500
	MW-1	11/5/98	<125	<125	<125	<125	140	<125	160	<125	170	28,000	
	MVV-1	2/3/99	<125	<125	<125	<125	130	<125	160	<125	160	27,000	
MW-2	MW-2-0304	3/4/98	<10	<10	<10	13	34	<10	65	<10	<10	2,700	
	MW-2-0520	5/20/98	<10	<10	<10	14	38	<10	68	<10	<10	3,000	2,500
	MW-2	11/5/98	<10	<10	<10	13	36	<10	68	<10	<10	3,200	
	MW-2	2/3/99	<10	<10	<10	13	36	<10	70	<10	<10	3,200	
MW-3	MW-3-0304	3/4/98	<10	13	<10	14	82	<10	200	<10	<10	2,800	
	MW-3-0520	5/20/98	<10	<10	<10	13	58	<10	230	15	<10	2,800	1,100
	MW-3	11/5/98	<10	<10	<10	11	66	<10	240	18	<10	2,300	
	MW-3	2/3/99	<10	<10	<10	11	64	<10	220	18	<10	2,000	
MW-4	MW-4	11/5/98	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.67	<0.5	<0.5	6.7	
	MW-4	2/3/99	<0.5	<0.5	<0.5	<0.5	<0.5	2.1	<0.5	<0.5	<0.5	<0.5	
MW-5	MW-5	11/5/98	<25	<25	<25	<25	42	<25	380	30	<25	5,000	-
	MW-5-DUP	11/5/98	<25	<25	<25	<25	40	<25	360	29	<25	4,800	
	MW-5	2/3/99	<25	<25	<25	<25	49	<25	420	35	<25	5,100	
	MW-5-DUP	2/3/99	<25	<25	<25	<25	45	<25	370	31	<25	4,500	

NOTES:

1,1-DCA = 1,1-dichloroethane

1,1-DCE = 1,1-dichloroethene

1,2-DCA = 1,2-dichloroethane

c-1,2-DCE = cis-1,2-dichloroethene

t-1,2-DCE = trans-1,2-dichloroethene

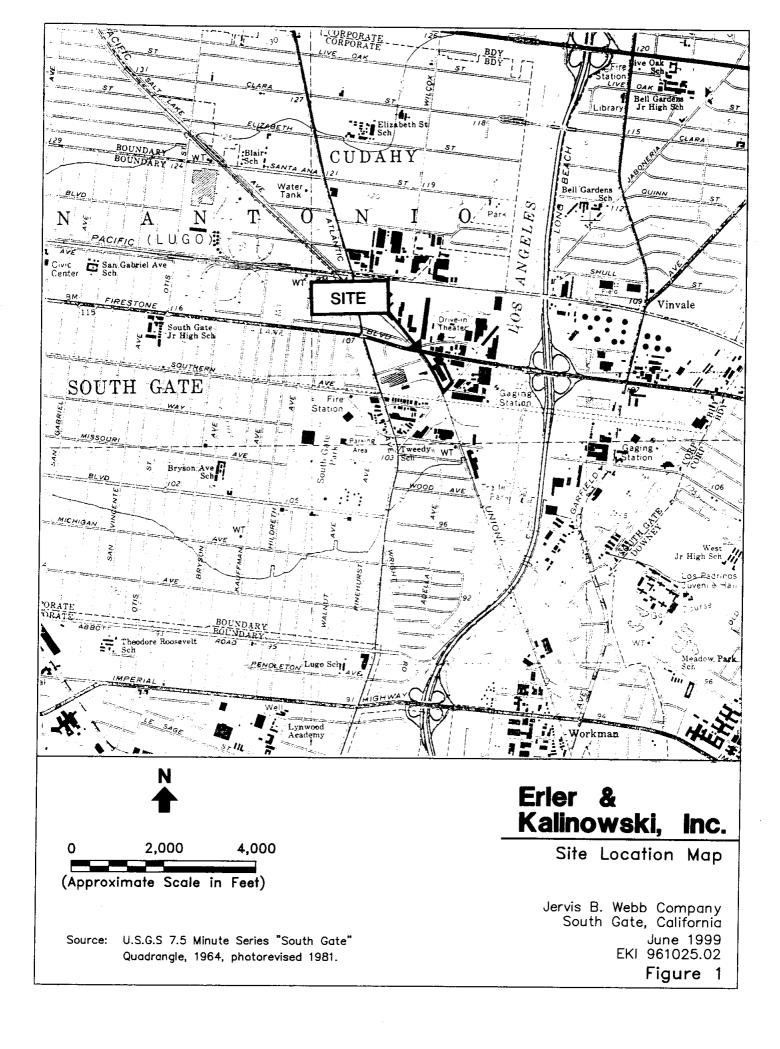
PCE = tetrachloroethene

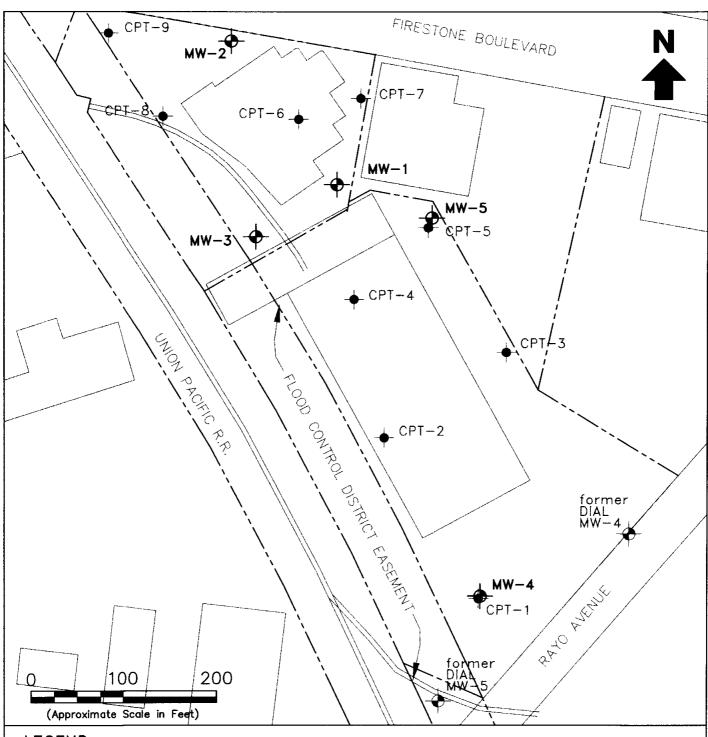
TCE = trichloroethene

TDS = total dissolved solids

VOCs = volatile organic compounds

Xylenes = total Xylene isomers


mg/l = milligrams per liter


ug/l = micrograms per liter

-- indicates not analyzed

^{1.} Analyses performed by Orange Coast Analytical, Inc. using EPA Method 8260 for VOCs and EPA Method 160.1 for TDS.

^{1. &}lt; indicates that the analyte was not detected at a concentration above the indicated method detection limit.

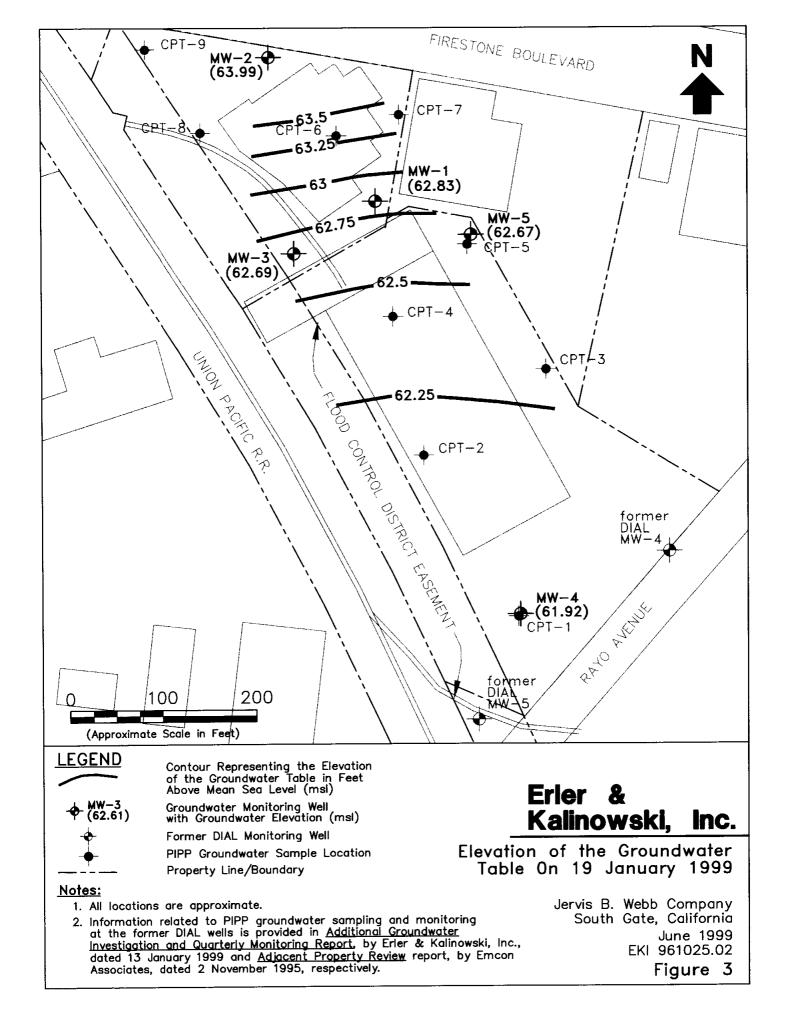
LEGEND

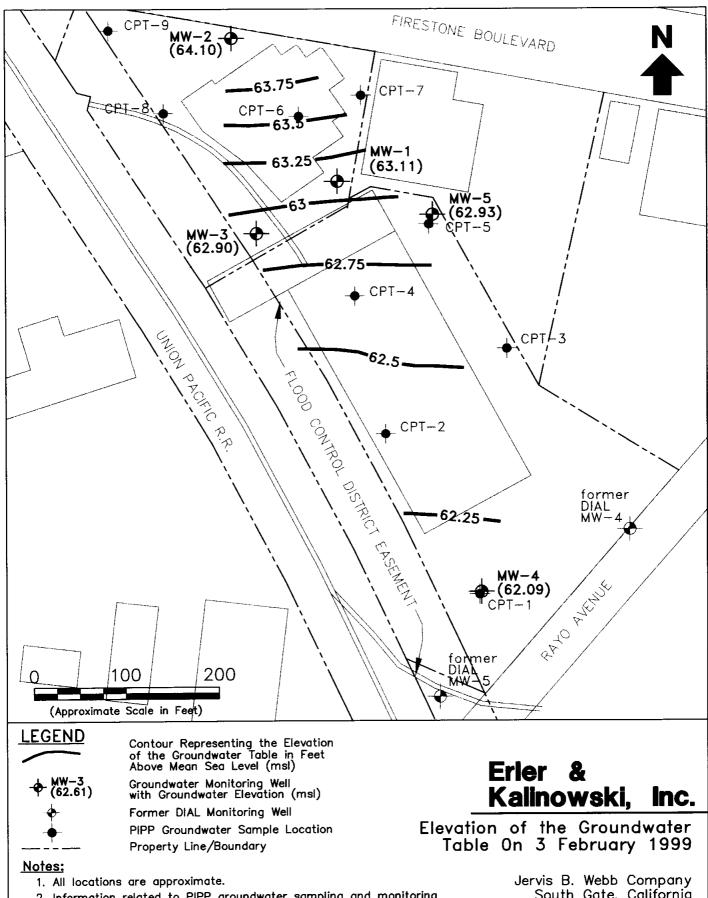
<u></u> ₩₩-3

Groundwater Monitoring Well with Groundwater Elevation (msl)

Former DIAL Monitoring Well
PIPP Groundwater Sample Location
Property Line/Boundary

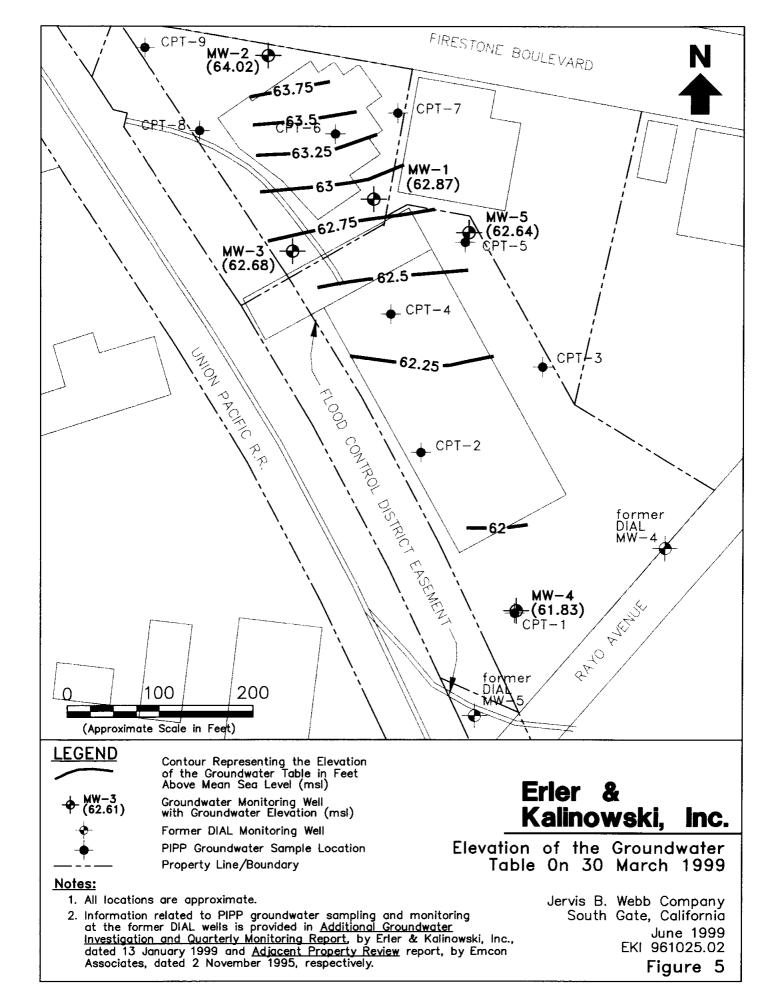
Erler & Kalinowski, Inc.


Monitoring Well Locations


Notes:

1. All locations are approximate.

2. Information related to PIPP groundwater sampling and monitoring at the former DIAL wells is provided in <u>Additional Groundwater Investigation and Quarterly Monitoring Report</u>, by Erler & Kalinowski, Inc., dated 13 January 1999 and <u>Adjacent Property Review</u> report, by Emcon Associates, dated 2 November 1995, respectively.


Jervis B. Webb Company South Gate, California June 1999 EKI 961025.02 Figure 2

2. Information related to PIPP groundwater sampling and monitoring at the former DIAL wells is provided in <u>Additional Groundwater Investigation and Quarterly Monitoring Report</u>, by Erler & Kalinowski, Inc., dated 13 January 1999 and <u>Adjacent Property Review</u> report, by Emcon Associates, dated 2 November 1995, respectively.

Jervis B. Webb Company South Gate, California June 1999 EKI 961025.02 **Figure 4**

APPENDIX A

Groundwater Purge and Water Quality Monitoring Forms for Groundwater Sampling

PROJECT NAME:			·	D	ATE:	· · · · · · · · · · · · · · · · · · ·
PROJECT NUMBER:		WELL	NUMBER:	PI	ERSONNEL:	
WELL VOLUME CALCU	ATION:					·
Depth of	Depth to		Water	Multiplier		Casing Vo
	Water (ft.)		Column (ft.)			(gallons
470' -	42.98'	=	27.02'	* 0.64	=	`.
Mult. for casing diam. = 2-in.=0	.16; 4-in.=0.64; 5-in.=					
				INSTRUMENT	CALIBRATION	
No. of bailers prior to star	t of purge:				Field	Standard
				Instrument	measure	measure
PURGE METHOD: 21	' LUBMANS	Ble Du	u P			
	5 5 5 5	1011	v i	Conductivity	_	
PURGE DEPTH: ~4/5	-1			pH	SEE LOG For	٤
,,	•			pH	SET LOS FOR WELL MW-4	/
START TIME: 13:38	₹ END	TIME: 14	' '06-	Turbidity	DIEDE TITO (
		17.	06	Temperature		
TOTAL GALLONS PURG	FD: 55			Depth Probe		
Time	<u> </u>	1/ 4	1	Departrobe	Ţ	
	/3:	16 13:59	13:05			
Volume Purged (gallons)	24		40			
Temperature (degrees F o			<u> </u>		 	-
	70.	1 70.3	69.7			
pH (units)	19	Z 7.28	700			
Specific Conductivity (uS/o	(m)	9 1.70	1.50			
	1,6	61 1.71	1.78			
Turbidity/Color (NTU)						
	9.8	0 2.12	1.97			
Odor						
Depth to Water (ft below T	OC)					-
during purge	, <u> </u>			İ		
Number of Casing						
Volumes removed						
Purge Rate (gallons/minut	e)					
COMMENTS/ Field I.D.	Time Co	llected	Containers & I	Preservation	Analyses Requested	
: MW-	1 14:11	0	2 × VOx	tw/Hz1	8260	
				<i>i</i> –		

PROJECT NAME:			•			ATE:		SKI, IIIC
PROJECT NUMBER: 96102	د مع	\A/⊏LL N	II IMBED:	Marila			Oall	
WELL VOLUME CALCULATION:	3.02	VVELLIN	OWIDER.	MW - 2	<u>/</u> PE	RSONNEL:	RCH	
Depth of Depth to			Water		Multiplier			Casing Vol
Well (ft.) Water (ft.)		Column (ft	.)	(below)			(gallons
170' - 42.55	-1	=	17.45	-* *	and	=		
Mult. for casing diam. = 2-in.=0.16; 4-in.=0.		6-in.=1.44 g	als/ft.		0167			
				INST	RUMENT	CALIBRATIO	N	
No. of bailers prior to start of purge	: O					Field		Standard
				Instrun	nent	measure	<u>)</u>	measure
PURGE METHOD: 24 SUBTA	LONCIBL	E Pun	uP				-	
				Condu	ctivity			
PURGE DEPTH: 45				рH	,	SEE LOG	Fon	
, , , , , , , , , , , , , , , , , , , ,				pΗ		WELL M	61-4	
START TIME: ///	END TIM	ie: /θ:	11	Turbidit		over m	,	
START TIME: 10:24	LIND III	· (V)	> 7		•			
TOTAL GALLONS BURGED: 7.	,			Tempe				
TOTAL GALLONS PURGED: 76	+	Į	1	Depth F	Tobe	1	1	
	10:32	10:36	10:49	10:48	10:52	10:56		
Volume Purged (gallons)						10,00		
	20	30	40	50	60	70		
Temperature (degrees F or C)	69.9	601	68.5	68.0	(0.1	100		
pH (units)	67.7	69.6	60.0	00,0	68.1	66.7		<u>-</u>
pri (umo)	7.22	7.18	7.7	7.16	7.17	7.14		
Specific Conductivity (uS/cm)		,						
	2.29	2.95	3.19	3.26	361	3.%		
Turbidity/Color (NTU)	200	149	ربه سع	17.2	100			
Odor	281	(47	51.8	11.2	10.8	5.0		
Depth to Water (ft below TOC)								
during purge								
Number of Casing Volumes removed]					
Purge Rate (gallons/minute)								
, ango riato (gano janoniaro)	*	¥						
COMMENTS/ Field I.D.	Time Collecte	 <u>d</u>	Containers 8	Reservatio	<u>n</u>	Analyses Reque	ested	
SAMPLES: MW - 2	11:05		2 x 1/1	A N/W	<i>b</i> /	8260		
			70		-/			
				_				
* FLOW MATE	e ADIM	作自	neave	ed)				
•				,				
								İ

PROJECT NAME:		-				DA	TE:		
PROJECT NUMBER: 96(02) WELL VOLUME CALCULATION:	5.02	WELL N	IUMBER:	M	w	3 PE	RSONNEL	Ref	
WELL VOLUME CALCULATION:									
Depth of Depth to			Water			Multiplier			Casing Vol.
Weil (ft.) Water (ft.)			Column (ft.)		(below)	/-	1	(gallons)
170' - 42.97'		=	27. 03	, •	*	0.64	= 10	7.29 3.3 gals	
Mult. for casing diam. = 2-in.=0.16; 4-in.=0.64	; 5-in.=1.02;	6-in.=1.44 g	als/ft.			V. 01	*	5.7 gas	
					INST	RUMENT	CALIBRAT	ION ^f	
No. of bailers prior to start of purge:	Ø						Field		Standard
PURGE METHOD: 2" SUMM	ensubl	€ Pun	nP		Instrun	nent	measu	ıre	measure
					Condu	ctivity			
PURGE DEPTH: 745					рН		SEE 1	of fon	
, -					ρH				
START TIME: 11:30	END TIN	ΛΕ· . /).			Turbidi	h.	WELL W	400-4	
OTAIN IIIIE. 11.30	LIND III	ле: Д ::	40	ŀ					
TOTAL GALLONS PURGED: 60	·			1	Tempe				
TOTAL GALLONS PURGED: 50)	1	1		Depth I	Tiobe	 		<u> </u>
	11:40	11:50	Dias	12	10	12:20			
Volume Purged (gallons)	11.10	10.10			,	1.000			
	10	20	30	140	- 2	50			
Temperature (degrees F or C)				1					
	67.2	66.3	65.8	65	g	66.0			
pH (units)									
	7.31	7.23	7.31	17.	31	7,30			`
Specific Conductivity (uS/cm)	1					1			
	1.62	2.19	2.51	21	B	2.70			
Turbidity/Color (NTU)	C.	0	4	,	./	0			
	87.1	8.21	2.03	2.1	24	21			
Odor	}		ļ						
Depth to Water (ft below TOC)				 					
during purge				ĺ					
Number of Casing	<u> </u>	! 		 					
Volumes removed									
Purge Rate (gallons/minute)									
			·						ļ
COMMENTS/ Field I.D.	Time Collecte	ed .	Containers	& Pres	ervatio	<u>n</u>	Analyses Reg	uested	
SAMPLES:					, .				
MW-3	17:30		2 x Vc	DA U	1/ H	e/	8260		
					1	· ·			
									}
									•
									1

PROJECT NAME:			•			D/	NTE:		
PROJECT NUMBER: 961025.	07	WELL N	NUMBER:	141.	1-4		RSONNEL	· Pall	
WELL VOLUME CALCULATION:	<u> </u>			MU				: RCH	·
Depth of Depth to			Water			Multiplier			Casing Vo
Weil (ft.) Water (ft.)	1		Column (f	ft.)		(below)			
~70 - 4z.63	, '	. =	77.37	, '	*	0.64	=		,
1		6-in.=1.44 g	jals/ft.			0167			
				Į.	NST	RUMENT	CALIBRAT	ION	
No. of bailers prior to start of purge	<i>b</i>						Field		Standard
	•			[,	nstrum	nent	measi	I/A	
PURGE METHOD: 040 (A de	out all.	Pull	,	-				<u> </u>	measure
2 50000	ens ince	10101		ر ا	Samela.	_At:a	1 - 0	_	
DURCE DEPTH. 4				- 1		ctivity			_
PURGE DEPTH: 75				P	H		4.00	7	4.01
				P	H		7.04	/	7.00
START TIME: 9:26	END TIN	ИЕ: 9.	57	T	urbidit	ty	0.20	,	
·				_	empe	rature			
TOTAL GALLONS PURGED: 54	5 gallon	v S		D	epth F	Probe	••		
Time	- T	1	24		_				
Value de la constant	7.34	7.38	9:46	9:	50				
Volume Purged (gallons)	20	30	40	50					
Temperature (degrees F or C)	1					<u> </u>			
	67.5	68.3	68.7	69.	9				
pH (units)	16	10	10	/	D				
Specific Conquetivity (uS/cm)	6.12	6.80	6.12	6.	120				
opeoine conductivity (descrip)	3.92	24	314	30	ا مير				
Turbidity/Color (NTU)		2.00	7.67	/.	-				
	35.8	18.2	10.91	3.9	o				
Odor									
Doeth to Woter (# holow IOC)	ļ								
•					1			.	
— · — -									
_]		ļ	ļ	
Purge Rate (gallons/minute)									
COMMENTS/ Field I.D.	Time Collecte	<u></u>	Containers 8	& Prese	rvation	1	Analyses Req	uested	
			4		1 11	- 4			
Mult for casing diam. = 24n.=0.16; 4in.=0.64; 5in.=1.02; 6in.=1.44 gais/ft. INSTRUMENT CALIBRATION Field Standard Instrument									
PURGE METHOD: 2" SUB MURIS WILL PUM) PURGE DEPTH: 45' START TIME: 9:26 END TIME: 9:57 Turbidity O.20 O.20 TOTAL GALLONS PURGED: 55 Gallows Time 9:34 7:38 9:46 9:50 Depth Probe Temperature (degrees F or C) 61.5 68.3 68.7 69.0 PH (units) Conductivity (uS/cm) 3.92 3.64 3.65 Turbidity/Color (NTU) 55.8 (8.2 0.71 3.90 Odor Depth to Water (ft below TOC) during purge Volumes removed Purge Rate (gallons/minute) COMMENTS/ Field LD Time Collected Containers & Preservation Analyses Requested									
PURGE METHOD: 2" SUB MURK WILL "UNI" PURGE DEPTH: 45" START TIME: 9:26 END TIME: 9:57 TOTAL GALLONS PURGED: 55 qallows Time 7:34 7:38 9:46 9:50 Volume Purged (gallons) 20 30 40 Temperature (degrees F or C) 67.5 68.3 68.7 69.0 PH (units) Conductivity 1.08 1.60 ph 4.00 ph 7.04 7.00 Turbidity 0.20 0.20 Temperature 66.5 Depth Probe 1:24 9:38 9:46 9:50 Volume Purged (gallons) 20 30 40 50 Temperature (degrees F or C) 67.5 68.3 68.7 69.0 PH (units) Cifz 6.80 6.72 5.80 Turbidity/Color (NTU) 55.8 (8.2 0.71 3.90 Odor Depth to Water (it below TOC) during purge Number of Casing Volumes removed Purge Rate (gallons/minute) COMMENTS/ Field I.D. Time Collected Containers & Preservation Analyses Requested									

PROJECT NA	MF.				-			DATE:		
}	.**	01 -	_	\A/E111	NUMBER:		_			
PROJECT NU	ME CALCUI	761025	-02	VVELL		MW-	٢	PERSONNEL:	KeH	
Depth of		Depth to			Water		Multip	lier		Casing Vo
Well (ft.)		Water (ft.)			Column (ft.))	(below			(gallon:
270	- 4	3.20		=	26.80	*	0.6	•		(9000)
Mult. for casing di			5-in.=1.02;				0.6	4		
	·					INST	RUME	NT CALIBRATI	ON	
No. of bailers	prior to star	t of purge:	B					Field		Standar
						Instru	nent	measur	e	measur
PURGE METH	10D: 2.4	SUBME	18186	PUM	P				-	measur
ĺ	,,	00011		1 070.1		Condu	ctivity	SEE LOG	Kan	
PURGE DEPT	H: 45					рН		WELL MIN		
	<i>U</i>					pH		WE IL MAY	-/	
START TIME:	12:36		END TIN	AE /2	:16	Turbidi	ia.			
0174111112	12.00		CIVO IIII	, (<i>)</i>	• 60	Į.	•			
TOTAL GALLO	NIS DI IDG	ED: 55	-			Tempe				
Time	NO FORG		 			Depth	Probe			
			12:46	12:56	12:00				,	
Volume Purgeo	(gallons)		1 _		·0.00		1			
	,		20	30	46					
Temperature (c	iegrees + c	or C)	69.3	69.5	(0					
pH (units)			01.5	61.7	69.0	 .			<u> </u>	
,			7.28	7.35	7.27					
Specific Condu	ctivity (uS/c	cm)								
			3.53	3.65	3.68					
Turbidity/Color	(NTU)		11.5	3.2	100					i
Odor			11.7	2.2	1.79		<u> </u>			
				l					ļ	
Depth to Water	(ft below To	OC)							.	
during purge Number of Casi										
Volumes remov	_									
Purge Rate (gal		e)								
COMMENTS/	Field I.D.	Tia	me Collecte	<u>d</u>	Containers &	Preservatio	<u>n</u>	Analyses Requ	ested	
SAMPLES:	18.8 1 . 1		13:15	-	1. 110	, ,	1.,			j
	MW-5	- DUP			2 × VOA 2 × VOA	w/ /d	C/	8260		Í
	MW-5	- DOP	13:20	> ,	2 × VOA	' w/ 4	6/	8260		Í
						- / ./3		. .		

APPENDIX B

Laboratory Reports and Chain-of-Custody Forms for Groundwater Sampling

ORANGE COAST ANALYTICAL, INC.

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

ORANGE COAST ANALYTICAL THANKS YOU FOR YOUR BUSINESS

THE FOLLOWING PAGES ARE THE ANALYSIS REPORT

ON THE SAMPLES YOU REQUESTED.

IF YOU HAVE ANY QUESTIONS REGARDING THIS REPORT

PLEASE FEEL FREE TO CONTACT US.

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

LABORATORY REPORT FORM

Laboratory Name: ORANGE COAST ANALYTICAL, INC.

Address:

3002 Dow Suite 532 Tustin, CA 92780

Telephone:

(714) 832-0064

Laboratory Certification

(ELAP) No.:

1416

Expiration Date:

Mark Moderic

2001

Laboratory Director's Name (Print):

Mark Noorani

Client:

Erler & Kalinowski, Inc.

Project No.:

961025.02

Project Name:

Webb

Laboratory Reference: EKI 10548

Analytical Method: EPA 8260

Date Sampled:

02/03/99

Date Received:

02/04/99

Date Reported:

02/05/99

Sample Matrix:

Water

Chain of Custody Received:

Yes

Laboratory Director's Signature:

4-Bromofluorobenzene

ORANGE COAST ANALYTICAL, INC.

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

ANALYTICAL TEST RESULTS 8260 Reporting Unit: ug/l

DATE AN	IALYZED		02/04/99	02/04/99	02/04/99	02/04/99
DILUTIOI	V FACTOR		1	1	20	20
LAB SAN	IPLE I.D.			99020050	99020051	99020052
CLIENT S	SAMPLE I.D.			MW-4	MW-2	MW-3
COMPOUND		MDL	MB			
	· · ·					
Acetone		2.0	2.0	<2.0	<40	<40
Benzene		0.5	0.5	<0.5	<10	<10
Bromodichloromethane)	0.5	0.5	<0.5	<10	<10
Bromoform		0.5	0.5	<0.5	<10	<10
Bromomethane		1.0	1.0	<1.0	<20	<20
2-Butanone		1.0	1.0	<1.0	<20	<20
Carbon Disulfide		0.5	0.5	<0.5	<10	<10
Carbon Tetrachloride		0.5	0.5	<0.5	<10	<10
Chlorobenzene		0.5	0.5	<0.5	<10	<10
Chlorodibromomethane)	0.5	0.5	<0.5	<10	<10
Chloroethane		0.5	0.5	<0.5	<10	<10
2-Chloroethyl vinyl ethe	er	1.0	1.0	<1.0	<20	<20
Chloroform		0.5	0.5	<0.5	<10	<10
Chloromethane		0.5	0.5	<0.5	<10	<10
1,1-Dichloroethane		0.5	0.5	<0.5	13	11
1,2-Dichloroethane		0.5	0.5	2.1	<10	<10
1,1-Dichloroethene		0.5	0.5	<0.5	36	64
cis 1,2-Dichloroethene		0.5	0.5	<0.5	70	220
Trans 1,2-Dichloroether	ne	0.5	0.5	<0.5	<10	18
1,2-Dichloropropane		0.5	0.5	<0.5	<10	<10
cis-1,3-Dichloropropene	•	0.5	0.5	<0.5	<10	<10
trans-1,3-Dichloroprope	ne	0.5	0.5	<0.5	<10	<10
Ethylbenzene		0.5	0.5	<0.5	<10	<10
2-Hexanone		1.0	1.0	<1.0	<20	<20
Methylene chloride		2.5	2.5	<2.5	<50	<50
4-Methyl-2-pentanone		1.0	1.0	<1.0	<20	<20
Styrene		0.5	0.5	<0.5	<10	<10
1,1,2,2-Tetrachloroetha	ne	0.5	0.5	<0.5	<10	<10
Tetrachloroethene		0.5	0.5	<0.5	<10	<10
Toluene		0.5	0.5	<0.5	<10	<10
1,1,1-Trichloroethane		0.5	0.5	<0.5	<10	<10
1,1,2-Trichloroethane		0.5	0.5	<0.5	<10	<10
Trichloroethene		0.5	0.5	<0.5	3,200	2,000
Trichlorofluoromethane		0.5	0.5	<0.5	<10	<10
Vinyl acetate		1.0	1.0	<1.0	<20	<20
Vinyl Chloride	<u></u>	0.5	0.5	<0.5	<10	<10
Total Xylenes		0.5	0.5	<0.5	<10	<10
		T		····		
SURROGATE	SPK	ACP%	MB			
RECOVERY	CONC		%RC			
DD		00.115				
Dibromofluoromethane	50	86-118	97	98	99	100
Toluene-d8	50	88-110	101	101	99	101

86-115

50

99

98

97

100

ORANGE COAST ANALYTICAL, INC.

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

ANALYTICAL TEST RESULTS 8260 Reporting Unit: ug/l

DATE ANALYZED		02/04/99	02/04/99	02/04/99	02/04/99
DILUTION FACTOR		1	50	50	200
LAB SAMPLE I.D.			99020053	99020054	99020055
CLIENT SAMPLE I.D.			MW-5	MW-5-DUP	MW-1
COMPOUND	MDL	MB			
COMPOUND	INIDL	IVID			
Acetone	2.0	2.0	<100	<100	<400
Benzene	0.5	0.5	<25	<25	<100
Bromodichloromethane	0.5	0.5	<25	<25	<100
Bromoform	0.5	0.5	<25	<25	<100
Bromomethane	1.0	1.0	<50	<50	<200
2-Butanone	1.0	1.0	<50	<50	<200
Carbon Disulfide	0.5	0.5	<25	<25	<100
Carbon Tetrachloride	0.5	0.5	<25	<25	<100
Chlorobenzene	0.5	0.5	<25	<25	<100
Chlorodibromomethane	0.5	0.5	<25	<25	<100
Chloroethane	0.5	0.5	<25	<25	<100
2-Chloroethyl vinyl ether	1.0	1.0	<50	<50	<100
Chloroform	0.5	0.5	<25	<25	<100
Chloromethane	0.5	0.5	<25	<25	<100
1,1-Dichloroethane	0.5	0.5	<25	<25	<100
1,2-Dichloroethane	0.5	0.5	<25	<25	<100
1,1-Dichloroethene	0.5	0.5	49	45	130
cis 1,2-Dichloroethene	0.5	0.5	420	370	160
Trans 1,2-Dichloroethene	0.5	0.5	35	31	<100
1,2-Dichloropropane	0.5	0.5	<25	<25	<100
cis-1,3-Dichloropropene	0.5	0.5	<25	<25	<100
trans-1,3-Dichloropropene	0.5	0.5	<25	<25	<100
Ethylbenzene	0.5	0.5	<25	<25	<100
2-Hexanone	1.0	1.0	<50	<50	<200
Methylene chloride	2.5	2.5	<125	<125	<500
4-Methyl-2-pentanone	1.0	1.0	<50	<50	<200
Styrene	0.5	0.5	<25	<25	<100
1,1,2,2-Tetrachloroethane	0.5	0.5	<25	<25	<100
Tetrachloroethene	0.5	0.5	<25	<25	160
Toluene	0.5	0.5	<25	<25	<100
1,1,1-Trichloroethane	0.5	0.5	<25	<25	<100
1,1,2-Trichloroethane	0.5	0.5	<25	<25	<100
Trichloroethene	0.5	0.5	5,100	4,500	27,000
Trichlorofluoromethane	0.5	0.5	<25	<25	<100
Vinyl acetate	1.0	1.0	<50	<50	<200
Vinyl Chloride	0.5	0.5	<25	<25	<100
Total Xylenes	0.5	0.5	<25	<25	<100

SURROGATE	SPK	ACP%	MB			
RECOVERY	CONC		%RC			
Dibromofluoromethane	50	86-118	97	107	99	100
Toluene-d8	50	88-110	101	97	99	100
4-Bromofluorobenzene	50	86-115	99	96	97	98

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8260 QA / QC REPORT Reporting Unit: µg/l

1. Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Date Performed: 02/04/99

LAB Sample 1.D.: 99020050

Analyte	R1	SP	MS	MSD	%MS	%MSD	RPD	ACP %MS	ACP RPD
1,1-Dichloroethene	0.0	20	19	18	95	90	5	61-145	14
Benzene	0.0	20	19	19	95	95	0	76-127	11
Trihloroethene	0.0	20	19	19	95	95	0	71-120	14
Toluene	0.0	20	18	18	90	90	0	76-125	13
Chlorobenzene	0.0	20	19	20	95	100	5	75-130	13

R1 = Result of Laboratory Sample I.D.

SPK CONC = Spiking Concentration (≤5 X PQL); PQL = Practical Quantitation Limit.

MS = Matrix Spike Result

MSD = Matrix Spike Duplicate Result

%MS = Percent Recovery of MS: {(MS-R1)/SP} X 100.

%MSD = Percent Recovery of MSD: {(MSD-R1)/SP} X 100.

RPD = Relative Percent Difference: {(MS - MSD)/(MS + MSD)} X 100 X 2

ACP%MS(MSD) = Acceptable Range of Percent. ACP RPD = Acceptable Relative Percent Difference

2. Laboratory Quality Control check sample

Date Performed: 02/04/99

LAB Sample 1. D.: OCA 5656

ANALYTE	SPK CONC	RESULTS	%RECOVERY	ACP%
1,1-Dicholoroethane	50	48	96	80 -120
Carbon tetrachloride	50	48	96	80 -120
Ethylbenzene	50	44	88	80 -120
Tetrachloroethene	50	47	94	80 -120

ANALYST: Mitra Samiei DATE: 02/04/99

CHAIN OF CUSTODY / SAMPLE AMALYSIS REQUEST

Project III	imber: 9610	25.02			Analytical La		To the Con	57-
Project Na				•	Date Sampled:		3/99	
Source of	Samples: 5030	Fineston	Ne /9301 HAYO	•	Sampled By:	RCH		
Locationi	Mon	ITON WE	INPLIS	••	Report Renult		Steve Millen	
Lab	Fleld			-	Phone Humbers	(310)	314-8855	
Sample ID	Sample ID MW-4	Sample Type WATEK	Number and Type of Containers	Time Collected	λι· (Ε	nalyses D PA Hetho	equested 1 Humber)	Results Required By (Date/Time)
	MW-2	WATER	2 x VOA w/He1 2 x VOA w/He1	10:00	8260	.•		NormAL
	MW-3	WATER	Z x von w/He!	12:30	8260 8260			-
	MW-5-DUP	WATER	Z × VOA w/Hel	13:15	8260			
	MW-1	WATER.	Z x VOA W/Hel	13:20	8260			
		J. West	Z > VOA w/Hel	14:10	8260			*
								_
Special :	structions: 2							

PLEASE REPORT RESULTS USING RWQCB LAR FORMAT 10A